Estimating Markov model structures

نویسنده

  • Thorsten Brants
چکیده

We investigate the derivation of Markov model structures from text corpora. The structure of a Markov model is its number of states plus the set of outputs and transitions with non-zero probability. The domain of the investigated models is part-of-speech tagging. Our investigations concern two methods to derive Markov models and their structures. Both are able to form categories and allow words to belong to more than one of them. The rst method is model merging, which starts with a large and corpus-speci c model and successively merges states to generate smaller and more general models. The second method is model splitting, which is the inverse procedure and starts with a small and general model. States are successively split to generate larger and more speci c models. In an experiment, we show that the combination of these techniques yields tagging accuracies that are at least equivalent to those of standard approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Stock Price in Energy Market Including Oil, Gas, and Coal: The Comparison of Linear and Non-Linear Two-State Markov Regime Switching Models

A common method to study the dynamic behavior of macroeconomic variables is using linear time series models; however, they are unable to explain nonlinear behavior of the series. Given the dependency between stock market and derivatives, the behavior of the underlying asset price can be modeled using Markov switching process properties and the economic regime significance. In this paper, a two-...

متن کامل

A blended model for estimating of missing precipitation data (Case study of Tehran - Mehrabad station)

Meteorological stations usually contain some missing data for different reasons.There are several traditional methods for completing data, among them bivariate and multivariate linear and non-linear correlation analysis, double mass curve, ratio and difference methods, moving average and probability density functions are commonly used. In this paper a blended model comprising the bivariate expo...

متن کامل

Using Markov Chain to Analyze Production Lines Systems with Layout Constraints

There are some problems with estimating the time required for the manufacturing process of products, especially when there is a variable serving time, like control stage. These problems will cause overestimation of process time. Layout constraints, reworking constraints and inflexible product schedule in multi product lines need a precise planning to reduce volume in particular situation of lin...

متن کامل

A generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences

The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...

متن کامل

Asymmetric Effects of Monetary Policy and Business Cycles in Iran using Markov-switching Models

This paper investigates the asymmetric effects of monetary policy on economic growth over business cycles in Iran. Estimating the models using the Hamilton (1989) Markov-switching model and by employing the data for 1960-2012, the results well identify two regimes characterized as expansion and recession. Moreover, the results show that an expansionary monetary policy has a positive and statist...

متن کامل

Modeling Gasoline Consumption Behaviors in Iran Based on Long Memory and Regime Change

In this study, for the first time, we model gasoline consumption behavior in Iran using the long-term memory model of the autoregressive fractionally integrated moving average and non-linear Markov-Switching regime change model. Initially, the long-term memory feature of the ARFIMA model is investigated using the data from 1927 to 2017. The results indicate that the time series studied has a lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996